Contour graph based human tracking and action sequence recognition

نویسندگان

  • Shiming Xiang
  • Feiping Nie
  • Yangqiu Song
  • Changshui Zhang
چکیده

This paper introduces a new framework for human contour tracking and action sequence recognition. Given a gallery of labeled human contour sequences, we define each contour as a “word” and encode all of them into a contour dictionary. This dictionary will be used to translate the video. To this end, a contour graph is constructed by connecting all the neighboring contours. Then, the motion in a video is viewed as an instance of random walks on this graph. As a result, we can avoid explicitly parameterizing the contour curves and modeling the dynamical system for contour updating. In such a work setting, there are only a few state variables to be estimated when using Sequence Monte Carlo (SMC) approach to realize the random walks. In addition, the walks on the graph also perform sequence comparisons implicitly with those in the predefined gallery, from which statistics about class label is evaluated for action recognition. Experiments on diving tracking and recognition illustrate the validity of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video-based face recognition in color space by graph-based discriminant analysis

Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...

متن کامل

A New Approach to Human Motion Sequence Recognition with Application to Diving Actions

Human motion sequence-oriented spatio-temporal pattern analysis is a new problem in pattern recognition. This paper proposes an approach to human motion sequence recognition based on 2D spatiotemporal shape analysis, which is used to identify diving actions. The approach consists of the following main steps. For each image sequence involving human in diving, a simple exemplar-based contour trac...

متن کامل

Using Aspect Graphs to Control the Recovery and Tracking of Deformable Models

Active or deformable models have emerged as a popular modeling paradigm in computer vision. These models have the exibility to adapt themselves to the image data, ooering the potential for both generic object recognition and non-rigid object tracking. Because these active models are underconstrained, however, deformable shape recovery often requires manual segmentation or good model initializat...

متن کامل

Classification of Upper and Lower Face Action Units and Facial Expressions using Hybrid Tracking System and Probabilistic Neural Networks

The most of the human emotions are communicated by changes in one or two of discrete facial features. Theses changes are coded as Action Units (AUs). In this paper, we develop a lower and upper face AUs classification as well as six basic emotions classification system. We use an automatic hybrid tracking system, based on a novel two-step active contour tracking system for lower face and cross-...

متن کامل

Coupled-Contour Tracking through Non-orthogonal Projections and Fusion for Echocardiography

A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation p. 1 Enhancing Particle Filters Using Local Likelihood Sampling p. 16 A Boosted Particle Filter: Multitarget Detection and Tracking p. 28 Feature-Based Object Detection and Recognition I Simultaneous Object Recognition and Segmentation by Image Exploration p. 40 Recognition by Probabilistic Hypothesis Construction p. 55 Human Detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2008